

Biome Makers

We are geneticists, microbiologists, software engineers, bioinformaticians, communication and sales experts, and real winemakers.

we are...

20 team members 30 years old average

40%

PhD level

... in US and Europe

Biome Makers: Achievements

World Class Genomic Accelerator

Tech Accelerator

Winnovation Awards 2017 (San Francisco, CA)

AgFunder 2016 (San Francisco, CA)

Pyme Innovadora 2017 (Spain)

Semi-Finalist InnoStars (China)

Our AgTech proposal

Microbial discovery Welcoming future agriculture

The context

How much does it cost to solve AgProblems in the soil?

\$23.5B /year

Nutrition complements

\$15.2B /year

\$15.2B /year

Even after the treatments

20-40% crop value is lost due to diseases

WineSeq Portal

Ξ

Bioinformatics: using DNA to profile the microbiome


```
4,6-<,-C@E99FC@FC7FEFFC7+C,,CF988C+@:,,@@:FCF?F99-C<9@FFFGG8,,CCE7@@:CC7:-CEEE,,,,BFE9,C=?F<,,C,,,C++@77+,,BF9BE,,,AF,?,=B8B:7E<@?77B+++++++
M01758:13:000000000-AGN61:1:1101:10424:1581 1:N:0:47
.
RECGGGGGGTGCAAGTGTTCTTCGGAATTACTGGGCGTAAAGGGCTCGTAGGCGGTGTATCGCGTTGACTGTGAAAGTCCCCAACTCATCCCGGAATCCTCTCTAAACCCTTTCACTTTAGTGTGATAGAGGAGAGTGGTAT
6-A<-8+6+++4--CC<EEAF?E=77,B,,,<,<,=+@+++,,++,:4F+47B:@F++5ADB+3C3>+,,8C<,,-:<F,@B<++,,,8,,,+***8,,3?9:8,8,,8+,?<F99<3:;B@;<,,,,,,8,,<,*?,*8,2
M01758:13:000000000-AGN61:1:1101:17245:1588 1:N:0:47
.
RACAGAGGATGCAAGCGTTATCCGGAATGATTGGGCGTAAAGCGTCTGTAGGTGGCTTTTTAAGTCCGCCGTCAAATCCCAGGGCTCAACCCTGGACAGGCGGTGGAAACTACCAAGCTGGAGTACGGTAGGGGCAGAGGGA
A6B@C9FF9EEGFCFGGGG@FFGGGCCFF9FFGGGGDF@:<FEGFGGGGFGGGGGFGGGGGGGGGGGGGGGGD>AFFFGCEFGFGGFFFEFFEFCF8<<FC>FCDCCAFGEFFC8<FF@ECFFCFCEGCE7CFGC@@<EFC
M01758:13:000000000 - AGN61:1:1101:13450:1594 1:N:0:47
 ACAGAGGATGCAAGCGTTATCCGGAATGATTGGGCGTAAAGCGTCTGTAGGTGGCTTTTTAAGTCCGCCGTCAAATCCCAGGGCTCAACCCTGGACAGGCGGTGGAAACTACCAAGCTGGAGTACGGTAGGGGCATATGGA
8646-<C8@CDFCDFFFGGBFFGED7+C,6<EEFFEBF@,,EECBCBFGCFDCEFCFGGGAC8CFE<@@C7CC@:9FEFF,,,BFFF9,CEFFDD8D,4,C@+@CE7,<FF<AA8,,BF,,,?FBF7:E7C77EC:,:,8?9
M01758:13:000000000-AGN61:1:1101:15929:1613 1:N:0:47
 ACAGAGGATGCAAGCGTTATCCGGAATGATTGGCCGTAAAGCGTCTGTAGGTGGCTTTTTAAGTCCGCCGTCAAATCCCAGGGCTCAACCCTGGACAGGCGGTGGAAACTACCAAGCTGGAGTACGGTAGGGGCAGAGGGA
A@CCC9FF9FFFCEGFGGG7FEFFD@:FC9EF9@8ECFC78FFDFEEFGGGFCDFEGGGGFAEGGEEFFDDFEGDFFE@EA8<EFGFF9FCFF8D<C,,,C7+@:F7,,BF9BF SH174127.07FU_JF414846_reps
@M01758:13:000000000-AGN61:1:1101:22850:1639 1:N:0:47
ACAGAGGGATGCAAGCGTTATCCGGAATGATTGGGCGTAAAGCGTCTGTAGGTGGCTTTTTAAGTCCGCCGTCAAATCCCAGGGCTCAACCCTGGACAGGCGGTGGAAACTACC SH174129.07FU AY428786 reps
@N01758:13:000000000-AGN61:1:1101:23158:1641 1:N:0:47

TACGGGGGGGGCAAGTGTTCTTCGGAATGACTGGGCGTAAAGGGCACGTAGGCGGTGAATCGGGTTGAAAGTGAAAGTCGCCAAAAAGTGGCGGAATGCTCTCGAAACCAATTCA SH174133.07FU_DQ528792_reps
+
SH174134.07FU_FJ430720_reps
8BCCCEDDDFECFGGGGEFGGGGGGGGGADFFFFFGGGD@FGDGCFGFGFEGGDFC79FECEEGGGGCFGGGGFCFFGGGGEG8F7CBE9CEGGDFDFFGGGE.:>EGDS@FGGF SH174135.07FU KJ855505 reps
M01758:13:000000000-AGN61:1:1101:10323:1651 1:N:0:47
 GCAGAGGATGCAAGCGTTATCCGGAATGATTGGGCGTAAAGCGTCTGTAGGTGGCTTTTTAAGTCCGCCGTCAAATCCCAGGGCTCAACCCTGGACCGTCGGTGGAAACTACC SH174137.07FU_AJ132542_reps
8888--<8-CEEC9ECCFF;FFFEC7+C,,CE<88C:C:7@CF7B@FFGAE<E<CEEFGFGCECFFG,C:+CB:7<@F<FE<,?CED<,CF=C<<,4,4,4,8+>C+++<,B?,BE SH174139.07FU_AY265322_reps
@M01758:13:000000000-AGN61:1:11101:20555:1670 1:N:0:47
SH174140.07FU_AB818016_reps
M01758:13:000000000-AGN61:1:1101:20555:1670 1:N:0:47
 ACAGAGGATGCAAGCGTTATCCGGAATTATTGGGCGTAAAGCGTCTGTAGGTGGCTTTTTAAGTCCGCCGTCAAATCCCAGGGCTCTACCCTGGACAGGCGGTGTAATCTACC SH174141.07FU EU636699 reps
A8B88<EFCCFGFGGGGGG@F@FEEE+C,66EFGGGGFGGGFGGGFGGGGCAFF@<C,C,CFF,C@F@+@+68FE,C6,,:?B,6,:?FFAFFFFCFG<+87+89A,<9,5C SH174143.07FU_KJ855497_reps
@M01758:13:0000000000-AGN61:1:1101:16505:1670 1:N:0:47
 ACGGGGGGGCAAGTGTTCTTCGGAATGACTGGGCGTAAAGGGCACGTAGGCGGTGAATCGGGTTGGAAGTGAAAGTCGCCAAAAAGTGCCGGAATGCTCTCGAAACCAATTCA SH174145.07FU_EU144817_reps
SH174146.07FU_KG354577_reps
6BBCEGDCCFEFFG9FF3EFGGGBEGB,DF<FGGCG<+>@FEE7C<DBFGGDGFE@,FC8FF<CFE8<:BCF:EDFFCFGCFG*1<CA9CCG5EGGCFF9CC:E>E:@EFFFFG SH174147.07FU_AB274433_reps
@M01758:13:000000000-AGN61:1:1101:20750:1682 1:N:0:47

SH174148.07FU_AB512785_reps
M01758:13:000000000-AGN61:1:1101:20750:1682 1:N:0:47
 ACAGAGGATGCAAGCGTTATCCGGAATGATTGGGCGTAAAGCGTCTGTAGGTGGCTTTTTAAGTCCGCCGTCAAATCCCAGGGCTCAACCCTGGACAGGCGGTGGAAACTACC SH174170.07FU_FJ840463_refs
M01758:13:000000000-AGN61:1:1101:18595:1697 1:N:0:47
```

```
SH174126.07FU FJ541434 reps
SH174128.07FU_KJ855489_reps
SH174130.07FU_AB190407_reps
SH174136.07FU AF422960 refs
SH174138.07FU_KJ855487_reps
SH174142.07FU_JX134600_reps
SH174144.07FU_JF710374_reps
SH174173.07FU FJ362291 reps
SH174175.07FU_JF449882_reps
SH174177.07FU_JX192683_reps
SH174179.07FU_JX998685_reps
SH174183.07FU_G0927301_reps
SH174184.07FU GQ927299 reps
SH174185.07FU_GQ927305_reps
SH174189.07FU_GU949583_refs
SH174190.07FU_EU525947_refs
SH174191.07FU_AM882971_refs
SH174192.07FU_FJ553148_reps
SH174193.07FU_AM882808_reps
SH174194.07FU UDB004943 reps
SH174195.07FU HE687059 reps
SH174196.07FU_UDB015353_refs
SH174197.07FU_HQ604105_reps
 H174198.07FU_HF565068_reps
```

```
k_Fungi;p_Ascomycota;c_unidentified;o_unidentified;f_unidentified;g_unidentified;s_Ascomycota sp
k_Fungi;p_Ascomycota;c_Sordariomycetes;o_Magnaporthales;f_Magnaporthaceae;g_Gaeumannomyces;s_Gaeumannomyces;s_Gaeumannomyces;s_Gaeumannomyces;s_Gaeumannomyces;s_Gaeumannomyces;s_Gaeumannomyces;s_Gaeumannomyces;s_Gaeumannomyces;s_Gaeumannomyces;s_Gaeumannomyces;s_Gaeumannomyces;s_Gaeumannomyces;s_Gaeumannomyces;s_Gaeumannomyces;s_Gaeumannomyces;s_Gaeumannomyces;s_Gaeumannomyces;s_Gaeumannomyces;s_Gaeumannomyces;s_Gaeumannomyces;s_Gaeumannomyces;s_Gaeumannomyces;s_Gaeumannomyces;s_Gaeumannomyces;s_Gaeumannomyces;s_Gaeumannomyces;s_Gaeumannomyces;s_Gaeumannomyces;s_Gaeumannomyces;s_Gaeumannomyces;s_Gaeumannomyces;s_Gaeumannomyces;s_Gaeumannomyces;s_Gaeumannomyces;s_Gaeumannomyces;s_Gaeumannomyces;s_Gaeumannomyces;s_Gaeumannomyces;s_Gaeumannomyces;s_Gaeumannomyces;s_Gaeumannomyces;s_Gaeumannomyces;s_Gaeumannomyces;s_Gaeumannomyces;s_Gaeumannomyces;s_Gaeumannomyces;s_Gaeumannomyces;s_Gaeumannomyces;s_Gaeumannomyces;s_Gaeumannomyces;s_Gaeumannomyces;s_Gaeumannomyces;s_Gaeumannomyces;s_Gaeumannomyces;s_Gaeumannomyces;s_Gaeumannomyces;s_Gaeumannomyces;s_Gaeumannomyces;s_Gaeumannomyces;s_Gaeumannomyces;s_Gaeumannomyces;s_Gaeumannomyces;s_Gaeumannomyces;s_Gaeumannomyces;s_Gaeumannomyces;s_Gaeumannomyces;s_Gaeumannomyces;s_Gaeumannomyces;s_Gaeumannomyces;s_Gaeumannomyces;s_Gaeumannomyces;s_Gaeumannomyces;s_Gaeumannomyces;s_Gaeumannomyces;s_Gaeumannomyces;s_Gaeumannomyces;s_Gaeumannomyces;s_Gaeumannomyces;s_Gaeumannomyces;s_Gaeumannomyces;s_Gaeumannomyces;s_Gaeumannomyces;s_Gaeumannomyces;s_Gaeumannomyces;s_Gaeumannomyces;s_Gaeumannomyces;s_Gaeumannomyces;s_Gaeumannomyces;s_Gaeumannomyces;s_Gaeumannomyces;s_Gaeumannomyces;s_Gaeumannomyces;s_Gaeumannomyces;s_Gaeumannomyces;s_Gaeumannomyces;s_Gaeumannomyces;s_Gaeumannomyces;s_Gaeumannomyces;s_Gaeumannomyces;s_Gaeumannomyces;s_Gaeumannomyces;s_Gaeumannomyces;s_Gaeumannomyces;s_Gaeumannomyces;s_Gaeumannomyces;s_Gaeumannomyces;s_Gaeumannomyces;s_Gaeumannomyces;s_Gaeumannomyces;s_Gae
   k_Fungi;p_Ascomycota;c_Sordariomycetes;o_Magnaporthales;f_Magnaporthaceae;g_unidentified;s_Magnaporthaceae
k_Fungi;p_Ascomycota;c_Sordariomycetes;o_Magnaporthales;f_Magnaporthaceae;g_unidentified;s_Magnaporthaceae
k_Fungi;p_Ascomycota;c_Sordariomycetes;o_Magnaporthales;f_Magnaporthaceae;g_magnaporthiopsis;s_Magnaporthio
k_Fungi;p_Ascomycota;c_Sordariomycetes;o_Magnaporthales;f_Magnaporthaceae;g_Magnaporthe;s_Magnaporthe
k_Fungi;p_Ascomycota;c_Sordariomycetes;o_unidentified;f_unidentified;g_unidentified;s_Sordariomycetes;o_Magnaporthales;f_Magnaporthaceae;g_unidentified;s_Magnaporthaceae
k_Fungi;p_Ascomycota;c_Sordariomycetes;o_Magnaporthales;f_Magnaporthaceae;g_unidentified;s_Magnaporthaceae
k_Fungi;p_Ascomycota;c_Sordariomycetes;o_Magnaporthales;f_Magnaporthaceae;g_Buergenerula;s_Buergenerula;s_Buergenerula;s_Buergenerula;s_Buergenerula;s_Buergenerula;s_Buergenerula;s_Buergenerula;s_Buergenerula;s_Buergenerula;s_Buergenerula;s_Buergenerula;s_Buergenerula;s_Buergenerula;s_Buergenerula;s_Buergenerula;s_Buergenerula;s_Buergenerula;s_Buergenerula;s_Buergenerula;s_Buergenerula;s_Buergenerula;s_Buergenerula;s_Buergenerula;s_Buergenerula;s_Buergenerula;s_Buergenerula;s_Buergenerula;s_Buergenerula;s_Buergenerula;s_Buergenerula;s_Buergenerula;s_Buergenerula;s_Buergenerula;s_Buergenerula;s_Buergenerula;s_Buergenerula;s_Buergenerula;s_Buergenerula;s_Buergenerula;s_Buergenerula;s_Buergenerula;s_Buergenerula;s_Buergenerula;s_Buergenerula;s_Buergenerula;s_Buergenerula;s_Buergenerula;s_Buergenerula;s_Buergenerula;s_Buergenerula;s_Buergenerula;s_Buergenerula;s_Buergenerula;s_Buergenerula;s_Buergenerula;s_Buergenerula;s_Buergenerula;s_Buergenerula;s_Buergenerula;s_Buergenerula;s_Buergenerula;s_Buergenerula;s_Buergenerula;s_Buergenerula;s_Buergenerula;s_Buergenerula;s_Buergenerula;s_Buergenerula;s_Buergenerula;s_Buergenerula;s_Buergenerula;s_Buergenerula;s_Buergenerula;s_Buergenerula;s_Buergenerula;s_Buergenerula;s_Buergenerula;s_Buergenerula;s_Buergenerula;s_Buergenerula;s_Buergenerula;s_Buergenerula;s_Buergenerula;s_Buergenerula;s_Buergenerula;s_Buergenerula;s_Buergenerula;s_Buergenerula;s_Buergenerula;s_Buergenerula;s_Buerge
   k_Fungi;p_Ascomycota;c_Eurotiomycetes;o_Chaetothyriales;f_Herpotrichiellaceae;g_Phialophora;s_Phialophora
k_ Fungi;p_ Ascomycota;c_Sordariomycetes;o_Chaetotnyrtates;r_Herpotrtchtettaeae;g_Phlatophora;s_Phlatophora;s_Phlatophora;k_Fungi;p_Ascomycota;c_Sordariomycetes;o_Magnaporthales;f_Magnaporthaceae;g_Pyricularia;s_Pyricularia angul k_Fungi;p_Ascomycota;c_Sordariomycetes;o_Magnaporthales;f_Magnaporthaceae;g_Pyricularia;s_Pyricularia sp_Br_Herpothora;c_Sordariomycetes;o_Magnaporthales;f_Magnaporthaceae;g_Pyricularia;s_Harpophora oryzae k_Fungi;p_Ascomycota;c_Sordariomycetes;o_Magnaporthales;f_Magnaporthaceae;g_Magnaporthe;s_Magnaporthe poae k_Fungi;p_Ascomycota;c_Sordariomycetes;o_Magnaporthales;f_Magnaporthaceae;g_unidentified;s_Magnaporthaceae
   k Fungi;p_Ascomycota;c_Sordariomycetes;o_Magnaporthales;f_Magnaporthaceae;g_Gaeumannomyces;s_Gaeumannomyces
k_rungt;p__ascomycota;c_sordariomycetes;o_magnaporthales;r_magnaporthaceae;g_unidentified;s_Magnaporthaceae
k_rungi;p_Ascomycota;c_Sordariomycetes;o_Magnaporthales;f_Magnaporthaceae;g_unidentified;s_Sordariomycetes sp
k_rungi;p_Ascomycota;c_Sordariomycetes;o_Magnaporthales;f_Magnaporthaceae;g_Pyricularia;s_Pyricularia zingi
k_rungi;p_Ascomycota;c_Sordariomycetes;o_Magnaporthales;f_Magnaporthaceae;g_Pyricularia;s_Pyricularia sp MA
k_rungi;p_Basidiomycota;c_Agaricomycetes;o_Boletales;f_Sclerodermataceae;g_Scleroderma;s_Scleroderma sp
   k__Fungi;p__Basidiomycota;c__Agaricomycetes;o__Boletales;f__Boletaceae;g__Boletus;s__Boletus sp
   k_Fungi;p_Ascomycota;c_unidentified;o_unidentified;f_unidentified;g_unidentified;s_Ascomycota sp
 k_Fungi;p_Ascomycota;c_Leotiomycetes;o_Helotiales;f_unidentified;g_unidentified;s_Helotiales sp
k_Fungi;p_Ascomycota;c_Sordariomycetes;o_Hypocreales;f_Cordycipitaceae;g_unidentified;s_Cordycipitaceae sp
k_Fungi;p_Ascomycota;c_Sordariomycetes;o_Sordariales;f_unidentified;g_unidentified;s_Sordariales sp
k_Fungi;p_Ascomycota;c_Lecanoromycetes;o_Peltigerales;f_Pannariaceae;g_Psoroma;s_Psoroma fruticulosum
   k Fungi;p Ascomycota;c Lecanoromycetes;o Peltigerales;f Pannariaceae;g Psoroma;s Psoroma buchananii
   k_Fungi;p_Ascomycota;c_Lecanoromycetes;o_Peltigerales;f_Pannariaceae;g_Psoroma;s_Psoroma paleaceum
   k__Fungi;p__Basidiomycota;c__Agaricomycetes;o__Agaricales;f__Inocybaceae;g__Inocybe;s__Inocybe chondroderma
k_Fungi;p_Basidiomycota;c_Agaricomycetes;o_Agaricales;f_Inocybaceae;g_Inocybe;s_Inocybe sororia
k_Fungi;p_Basidiomycota;c_Agaricomycetes;o_Agaricales;f_Inocybaceae;g_Inocybe;s_Inocybe sororia
k_Fungi;p_Basidiomycota;c_Agaricomycetes;o_Agaricales;f_Inocybaceae;g_Inocybe;s_Inocybe sp
k_Fungi;p_Basidiomycota;c_Agaricomycetes;o_Agaricales;f_Inocybaceae;g_Inocybe;s_Inocybe cf microspora TAA18
k_Fungi;p_Basidiomycota;c_Agaricomycetes;o_Agaricales;f_Inocybaceae;g_Undentified;s_Inocybaceae sp
   k_Fungi;p_Basidiomycota;c_Agaricomycetes;o_Agaricales;f_unidentified;g_unidentified;s_Agaricales sp
  k__Fungi;p__Basidiomycota;c__Agaricomycetes;o__Agaricales;f__Inocybaceae;g__Inocybe;s__Inocybe subnudipes
  k_Fungi;p_Basidiomycota;c_Agaricomycetes;o_Agaricales;f_Inocybaceae;g_Inocybe;s_Inocybe posterula
  k_Fungi;p_Basidiomycota;c_Agaricomycetes;o_Agaricales;f_unidentified;g_unidentified;s_Agaricales sp
```

WineSeq Technology – metadata database

Ε

119 Boxes

Our internal intelligence platform

We take advantage of big data tools to:

- Understand global trends in plant diseases distribution and virulence
- Certificate sustainable farming practices
- Drive microbial discovery projects
- Create Biobanks of microbial resources

Understanding the Microbiome

4INFLUENCES OF TERROIR

CLIMATE

COLD

Precipitaciónón

SOIL

.....

Estructura del suelo

TERRAIN

.....

Altitud

TRADITION

SUSTAINABLE MICROBIAL

Biofertilizer MetaCrop Biome X respects the native microbial community, avoid most of crop pathogens and improve Biocontrol and Nitrogen Fixation Species.

- PATHOGENS
- NITROGEN FIXATORS
- BIOCONTROL
- PLANT GROWTH PROMOTERS

Soil as BioMarker of Agriculte Practices

Applying smart discovery

WineSeq is a Methodology: Sample collection

E

DOWNLOAD THE APP DESCARGA LA APP

-30cm (12in)-

I5-10cm (2-4in) COLLECT THE SAMPLE RECOGE LA MUESTRA

CHOOSE A PLOT SELECCIONA UNA PARCELA

SEND THE TUBE BACK ENVÍANOS EL TUBO

TAKE A PICTURE HAZ UNA FOTO

Crowding knowledge - Open Information

Ξ

GRAPE VARIETIES

298 grape varieties registered in Wikibiome

FEATURED GRAPE VARIETY

Verdejo White

Very sensitive to powdery mildew. Moderately to botrytis.

Medium-alcohol content wines, greenish-yellow in hue, very aromatic, with aromas of bitter almonds. Medium to high acidity wines with body but with a

Learn more

VINE DISEASES

61 vine diseases registered in Wikibiome

FEATURED DISEASE

Pierce's disease Treatable

Pierce's disease is known since 1892 after the description made by Newton Pierce. Pierce's disease is recognized as the most devastating grape disease caused by a bacterium. The disease is severe in countries like US, and is

Aggressive

Learn more

EDITED RECENTLY

WINE MAKING MICROORGANISMS

2672 microorganisms registered in Wikibiome

FEATURED MICROORGANISM

Armillaria mellea Fungus Plant Health Wine Making

Also known as "Honey fungus",
Armillaria is a genus of parasitic
fungi that lives on trees and woody
shrubs. It includes about 10
species formerly lumped together
as A. mellea. Armillarias are long
lived and form some of the largest

O NOT FOUND IN YOUR SAMPLES

Learn more

EDITED RECENTLY

Plasmopara viticola

Success Cases & Curiosities

Heavy treated vineyard: Healthy soil or dead soil?

E

DISEASE RISK TEST

Diseases found

Based on

660
Microorganisms found in the sample

Visualize these abundances in the toolkit

Average in Organic soils: 1.067 sp

POTENTIAL FERMENTATION TEST

Enhancers

VIEW FULL REPORT

Brett detection in Soil, Grape and Wine

•

SEVERITY

out of 100

samples

SEVERITY

<10 out of 100

Risk severity compared to other vineyard

Risk severity compared

to other vineyard

samples

Mild

Mild

20

5 Biocontrol sp

www.portal.wineseq.com/success_cases

WineSeq works and the proof is here

BIOME MAKERS USA

665 3rd St #250 San Francisco, CA 94107 USA

BIOME MAKERS

BIOME MAKERS EUROPE

Paseo de Belén nº9 47011 Valladolid, Spain

Adrian Ferrero

Co-Founder and CEO USA +1 (415) 967 9423 SPAIN (+34) 609 95 46 50 adrian@biomemakers.com

www.BIOMEMAKERS.com