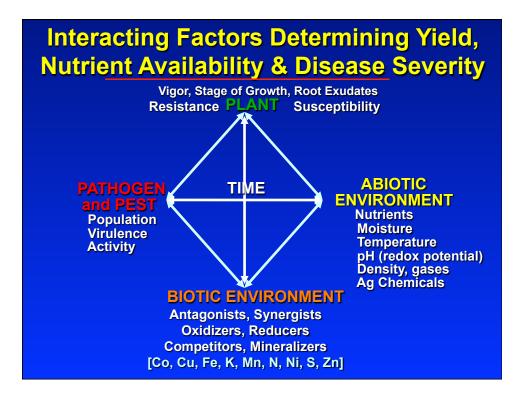
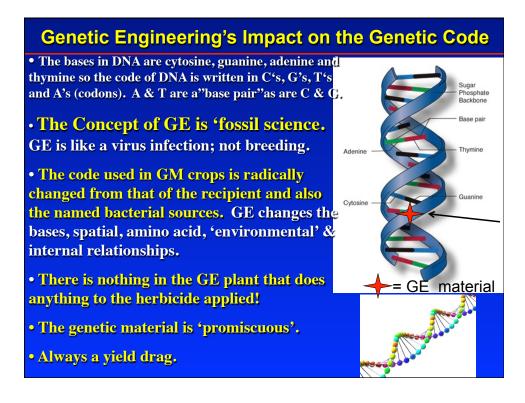
Genetic Engineering: Failed Promises, Flawed Science

Eco-Farm Conference Monteray, California January 20, 2016


Don M. Huber, Professor Emeritus, Purdue University

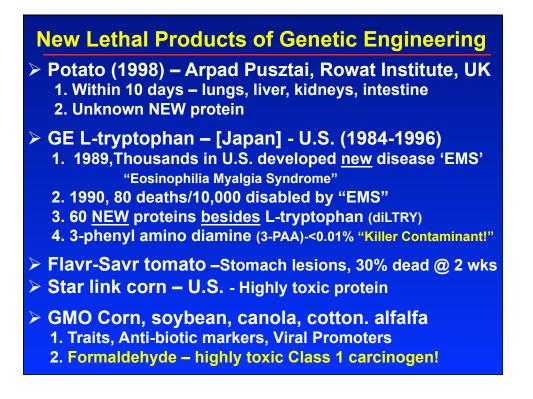


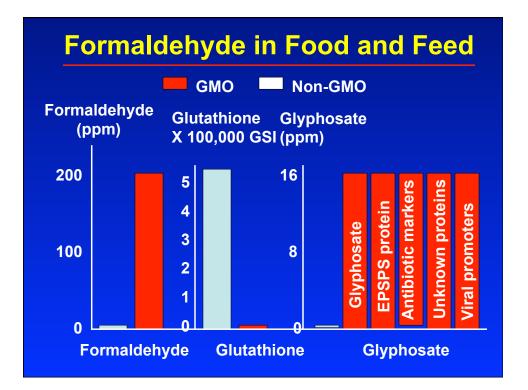
Genetic Engineering is Promoted as the 21st Century Solution to:

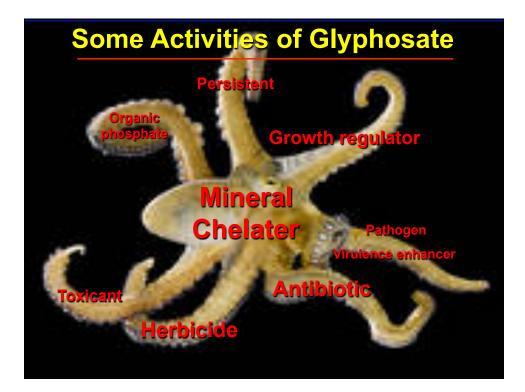
- Hunger and Malnutrition
- Climate change
- Economic well being
- Food safety and security
- Toxic chemical usage
- Environmental degradation
- Agricultural sustainability

It has failed on all points!

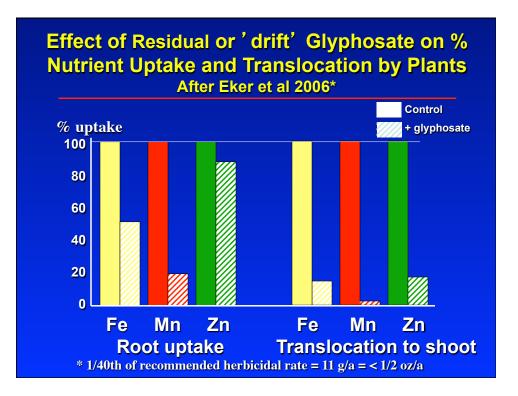
Two Factors to Understand

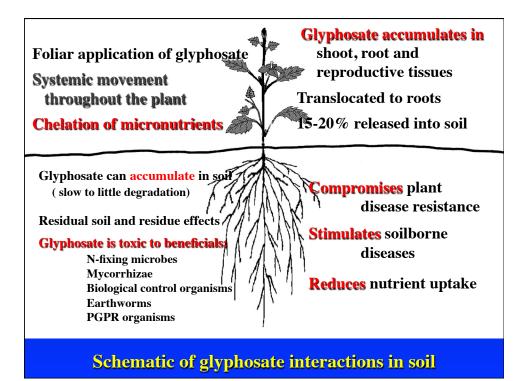

 Intended and unintended consequences of the genetic changes
 A. Inserts: traits, promoters, markers

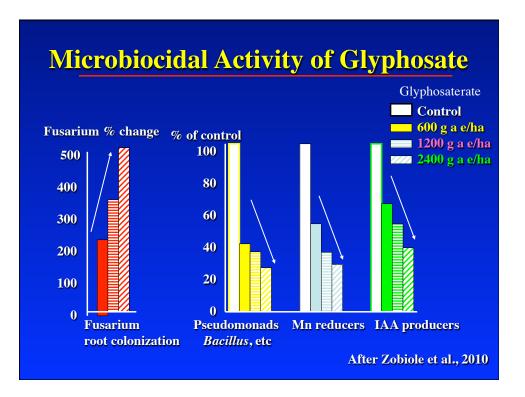

B. Other (new) products produced


2. Toxicity of Chemicals in the plant A. Herbicide containing

B. Insecticide producing


Nothing in the GE plant affects glyphosate in plant!



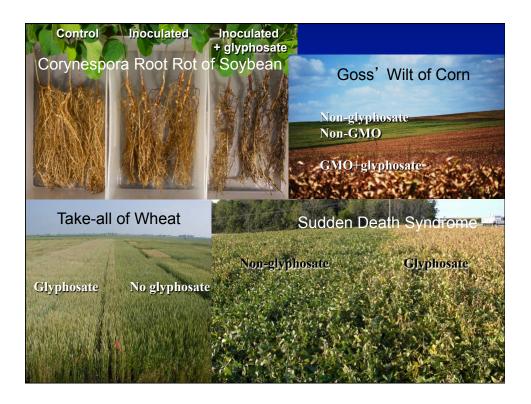


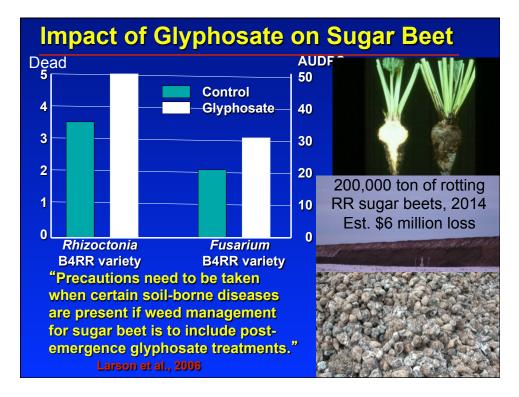
Nutrients are:Components of plant and animal tissues andActivators,Inhibitors,<tr

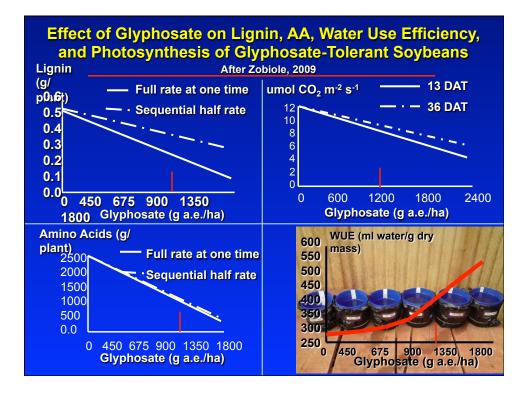
6

Reduced Nutrient Efficiency of Isogenic RR Soybeans (After Zobiole, 2008)

Tissue: Isoline	<u>Mn</u> %	<u>Zn</u> %	
Normal	100	100	
Roundup Ready®	83	53	
RR + glyphosate	76	45	


Copper, iron, and other essential nutrients Were also lower in the RR isoline and reduced further by glyphosate! After Zobiole et al., 2009


<text><text>


Some	Diseases	Increased	hy Glyn	hosate

Host plant	Disease	Pathogen	
Apple	Canker	Botryosphaeria dothidea	
Banana	Panama	Fusarium oxysporum f.sp. cubense	
Barley	Root rot	Magnaporthe grisea	
Beans	Root rot	Fusarium solani f.sp. phaseoli	
Bean	Damping off	Pythium spp.	
Bean	Root rot	Thielaviopsis bassicola	
Canola	Crown rot	Fusarium spp.	
Canola	Wilt	Fusarium oxysporum	
Citrus	CVC	Xylella fastidiosa	
Corn	Root and Ear rots	Fusarium spp.	N.A.
Cotton	Damping off	Pythium spp.	Red L
Cotton	Bunchy top	Manganese deficiency	Fusarium scab
Cotton	Wilt	F. oxysporum f.sp. vasinfectum	Fusanum scap
Grape	Black goo	Phaeomoniella chlamydospora	
Melon	Root rot	Monosporascus cannonbalus	
Soybeans	Root rot, Target spot	Corynespora cassicola	
Soybeans	White mold	Sclerotina sclerotiorium	
Soybeans	SDS	Fusarium solani f.sp. glycines	
Sugar beet	Rots, Damping off	Rhizoctonia and Fusarium	
Sugarcane	Decline	Marasmius spp.	
Tomato	Wilt (New)	Fusarium oxysporum f.sp. pisi	the w
Various	Canker	Phytophthora spp.	1 ATK
Weeds	Biocontrol	Myrothecium verucaria	
Wheat	Bare patch	Rhizoctonia solani	
Wheat	Glume blotch	Septoria spp.	N.
Wheat	Root rot	Fusarium spp.	
Wheat	Head scab	Fusarium graminearum	Take-all root rot
Wheat	Take-all	Gaeumannomyces graminis	and and a

Factors Predisposing to Fusa	rium Hea	nd Scab
(Fusarium spp.; Gibberela ✓ Environment was the most important factor in FHB development in eastern Saskatchewan, from 1999 to 2002		
 Application of glyphosate formulations was the most important agronomic factor associated with higher FHB levels in spring wheat 	Number of glyphosate applications the <u>previous</u> <u>three years</u>	% Increase in head scab
 Positive association of glyphosate with FHB was not affected by environmental conditions as much as that of other agronomic 	None 1 to 2	00 152 ***
(Fernandez et al. 2005, <i>Crop Sci. 45: 1908-1916</i>) (Fernandez et al., 2007, Crop Sci. 47:1574-1584)	3 to 6	295 ***

Does Genetic Engineering Make a Difference? Ac Neurolup Ready beans t glyphosate twice Missed spraying Conventional beans No glyphosate

Does Genetic Engineering Make a Difference? Maurice, Iowa, 2012 - Severe Drought (these two fields have a gravel road between them)

Triple Stak GMO Corn + Glyphosate herbicide Normal, Non-GMO Corn No glyphosate herbicide

<u>% Mineral Reduction</u> in Roundup Ready® Soybeans Treated with Glyphosate

29 NS NS 48 30 27
<u>48 30 27</u>
45

Food and Feed Safety Concerns
Reduced nutrient density - Co, Cu, Fe, Mg, <u>Mn</u> , Zn
Increased levels of toxic products
- Mycotoxins [Fusarium toxins (DON, NIV, ZEA), aflatoxins] - Allergenic proteins and metabolic toxins
Premature ageing, reproductive failure
Ecological disruption - bees, amphibians, plant diversity, GI tract, soil, etc.
Gene flow - weeds, soil microbes, intestinal microbes
 Direct toxicity of glyphosate Cell death, immune failure, disease resistance Endocrine system, infertility, birth defects, teratogenicity

Nutrient	Alfalfa	Soy Beans**
Nitrogen	13 %	40 %
Phosphorus	15 %	
Potassium	46 %	16 %
Calcium	17 %	26 %
Magnesium	26 %	30 %
Sulfur	52 %	
Boron	18 %	
Copper	20 %	27 %
Iron	49 %	18 %
Manganese	31 %	48 %
Zinc	18 %	30 %

Erosion of Pig Stomachs, Intestines with GMO Soybean/Corn Feed, Iowa

Carman, Vlieger, 2011, 2013

Normal color

Inflamed, irritated

Inflammatory Bowel Disease in Humans

Inflammatory bowel diseases (IBD) Crohn's disease Ulcerative colitis Leaky gut Celliac disease Glutin intolerance Inflammation in the digestive tract. C.diffficile diarrhea

 Symptoms include: Abdominal cramps, Bloody diarrhea, Fever, Gut dysbiosis, Weight loss, Fatigue, Death

U.S. Cattlemen's Association Statement to Congress "Cattle ranchers are facing some puzzling - and, at times, economically devastating problems with pregnant cows and calves. At some facilities, **high numbers of fetuses are aborting for no apparent reason.** Other farmers successfully raise what look to be normal young cattle, only to learn when the animals are butchered that their **carcasses appear old and, therefore, less valuable."**

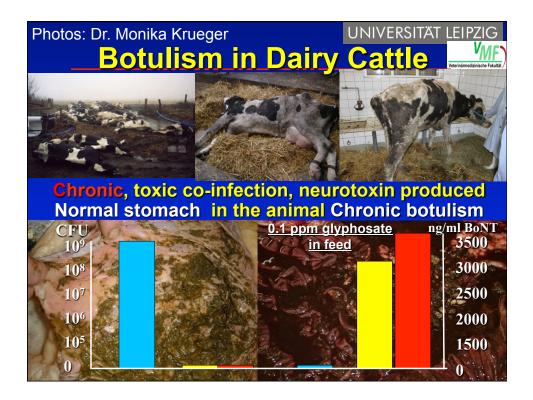
"The sporadic problem is so bad both in the United States and abroad that in some herds around 40-50 percent of pregnancies are being lost."

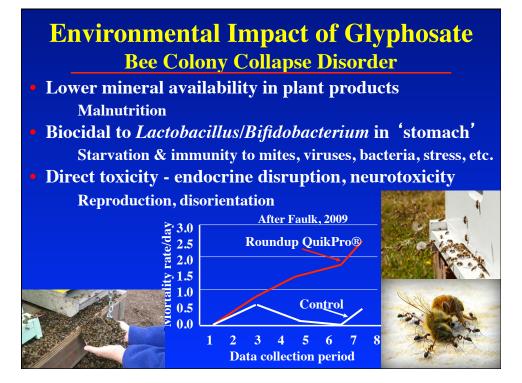
"Many pesticides and industrial pollutants also possess a hormonal alter ego."

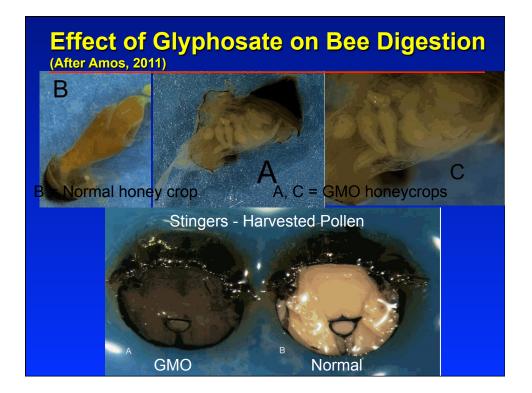
"The viability of this important industry is threatened." Source: Testimony of the Ranchers-Cattlemen Action Legal Fund, United Stock-growers of America, to the Senate Agriculture Committee July 24, 2002.

Why are so many cows losing pregnancies? Losing up to 20 percent of pregnancies is not acceptable. By Jenks Britt, D. V. M. and Fernando Alvarez, M. V. Z.						
				Herd		
Characteristics	A	B	С	D	E	F
Total cows	1,805	1,211	721	2,007	226	1,083
% herd pregnant	47	49	48	61	47	50
1 st service conception	28	27	30	32	41	41
Services for all cows	4.3	4.1	3.6	3.0	2.5	2.4
% pregnant now open	27	25	27	10	6	2

Source: Hoards Dairyman, November 2011, p 751.

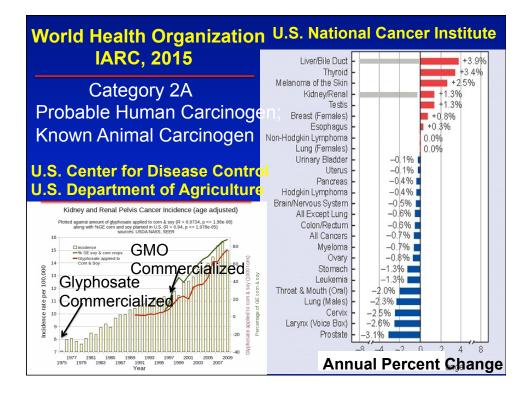

Toxicity to and Impact of Glyphosate on Poultry Intestinal Microflora

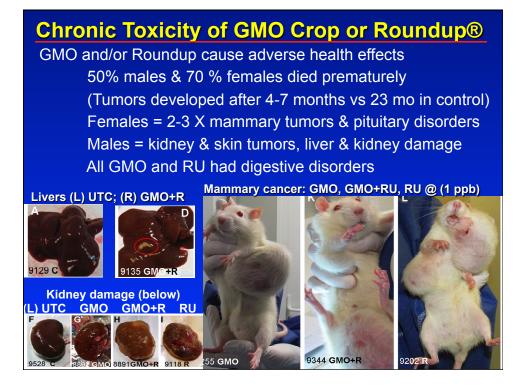

after Clair et al, 2012; Shehata et al, 2012; Krueger et al, 2012


Beneficials (Sensitive) Enterococcus faecalis Enterococcus faecium **Bacillus badius** Bifidobacterium adolescentis Lactobacillus spp. Campylobacter spp. Geotrichum candidum Lactococcus lactis subsp. cremoris Lactobacillus delbrueckii subsp. bulgaricus

Pathogens (Resistant) Salmonella entritidis Salmonella gallinarum Salmonella typhimurium **Clostridium perfringens** Clostridium botulinum **Clostridium deficale** Escherichia coli

16


Direct Toxicity of Glyphosate				
Rate (j	opm) System affected	Reference		
0.5	Human cell endocrine disruption	Toxicology 262:184-196, 2009		
0.5	Anti-androgenic	Gasner et al, 2009		
1.0	Disrupts aramatase enzymes	Gasnier et al, 2009		
1-10	Inhibits LDH, AST, ALF enzymes	Malatesta et al, 2005		
1-10	Damages liver, mitochondria, nuclei	Malatesta et al, 2005		
2.0	Anti-Oestrogenic	Gasnier et al, 2009		
5.0	DNA damage	Toxicology 262:184-196, 2009		
5.0	Human placental, umbilical, embryo	Chem.Res.Toxicol.J. 22:2009		
10	Cytotoxic	Toxicology 262:184-196, 2009		
10	Multiple cell damage	Seralini et al, 2009		
10	Total cell death	Chem.Res.Toxicol.J. 22:2009		
All	Systemic throughout body	Andon et al, 2009		
1-10	Suppress mitochondrial respiration	Peixoto et al, 2005		
	Parkinson' s	El Demerdash et al, 2001		
POEA	, AMPA even more toxic	Seralini et al, 2009		


Glyphosate Residues Allowed in:					
Food (Crop) ppm Livestock Feed ppm					
Beet, sugar, dried pulp 25	Grass, forage, 300				
Beet, sugar, roots 10	fodder, hay, group 17 300				
Canola, seed, oil 20	Grain, cereal, 100				
Corn, sweet 3.5	forage, fodder, straw 100				
Grain, cereals(grp 15) 30	Soybean, forage 100				
Oil seeds (ex. canola) 40	Soybean, hay 200				
Pea, dry 8	Soybean, hulls 120				
Peppermint, tops 200	Cattle, meat byproducts 5				
Quinoa, grain 5	Hay, alfalfa 400				
Shellfish 3					
Soybean seed 20					
Spice (group 19B) 7	Where is the research and				
Sugar, cane 2	Rationale for such disparity?				
Sugarcane, molasses 30					
Sweet potatoes 3					
Vegetable, legume 5 (ex	. Soybean & dry peas)				

Dietary Risk of Pesticides in Food*

Pesticide	Sample Size	% Positive	Ave (ppn Residue	· · · · · ·	% DRI**
AMPA	300	95.7	2.28	0.26-18.8	45.9
Glyphosate	300	90.3	<u>1.94</u>	0.26-20.6	<u>36.8</u>
			4.22 (Combined risk:	82.7
Chlorpyrifos	300	2.7	0.005		14.9
All Others	300	1.5	0.009	0.001-0.035	0.1

(Soybean grain, Serving size = 93 gm = 3.3 oz)

